50=-16t^2+124t+12

Simple and best practice solution for 50=-16t^2+124t+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=-16t^2+124t+12 equation:



50=-16t^2+124t+12
We move all terms to the left:
50-(-16t^2+124t+12)=0
We get rid of parentheses
16t^2-124t-12+50=0
We add all the numbers together, and all the variables
16t^2-124t+38=0
a = 16; b = -124; c = +38;
Δ = b2-4ac
Δ = -1242-4·16·38
Δ = 12944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12944}=\sqrt{16*809}=\sqrt{16}*\sqrt{809}=4\sqrt{809}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-124)-4\sqrt{809}}{2*16}=\frac{124-4\sqrt{809}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-124)+4\sqrt{809}}{2*16}=\frac{124+4\sqrt{809}}{32} $

See similar equations:

| (2x-10)/50=30 | | 80+50+10x=180 | | c÷4-1=3 | | -z/5=-15 | | 2^x+1=2^4 | | 4(4x+1)+2=-26 | | 3x^2+6x-12=27 | | 40+90+11x+6=180 | | X^2+4x-186=0 | | z/10+90=100 | | 80+45+3x+19=180 | | 80+50+6x+8=180 | | -30=-4+3x-9x | | 50=12k-11k | | 24+17m=143 | | 3x2.5=x | | 2/3y-5/4y+8=-11/12-4 | | 60x-42.95=57.95 | | x+1,2=2x | | 23-2x=7-4x | | 8r+8=40 | | j+11=23 | | 4x-9x-2=10-5x | | 60+40+7x+3=180 | | 2/3h=24 | | 10x-120=-100 | | 6y+1=34 | | 1/2m-6=4 | | 4x+3x-5+45=180 | | j/5+10=22 | | 1+4(5-2x)-6x=-2(6x-1)+18 | | 7=7d-8  |

Equations solver categories